Renoldflex - torsionally rigid steel coupling

Renoldflex Type A
- The Renoldflex type A arrangement uses two disc packs, two hubs, and a spacer. It is suitable for a wide variety of applications and design situations.
-精度设计和制造使得Renoldflex在各类应用中表现出色，无论是高精度要求的应用，还是需要高扭刚度的应用，都可以依赖于其出色的性能。
- Zero backlash: Ideal for use on synchronous machines or for machinery with frequent starts, stops, and reverses. Provides precision position control for applications where operational accuracy needs to be guaranteed.
- High operating temperatures: Renoldflex is designed to be 100% steel construction, which makes it suitable for use in a multitude of harsh and difficult operating environments including temperatures up to 80°C.
- Ideal for use on applications where thermal loading is an issue or high temperature liquid pumps.
- High operating speeds: Each Renoldflex component is manufactured to very high manufacturing tolerances for high-speed applications, including the presence of irregular or peak loads. This also allows for an accurate transmission of angular velocity.

Renoldflex Type B
- The Renoldflex type B arrangement uses two disc packs, two hubs, and a spacer. It is suitable for a wide variety of applications and design situations.
- The Renoldflex range of couplings is based upon a modular design where the precision-machined disc pack guarantees a high torsional stiffness. This is an integral characteristic for applications in packaging machines, paper machines, and continuous furnaces operating at high temperatures.
- Each Renoldflex component is manufactured to very high manufacturing tolerances for high-speed applications, including the presence of irregular or peak loads. This also allows for an accurate transmission of angular velocity.

Renoldflex - the advantages of the system
- Zero backlash: Ideal for use on synchronous machines or for machinery with frequent starts, stops, and reverses. Provides precision position control for applications where operational accuracy needs to be guaranteed.
- High operating temperatures: Renoldflex is designed to be 100% steel construction, which makes it suitable for use in a multitude of harsh and difficult operating environments including temperatures up to 80°C.
- Ideal for use on applications where thermal loading is an issue or high temperature liquid pumps.
- High operating speeds: Each Renoldflex component is manufactured to very high manufacturing tolerances for high-speed applications, including the presence of irregular or peak loads. This also allows for an accurate transmission of angular velocity.

Maintenance free
- The precision design and manufacture of the disc elements creates a perfect force distribution, which eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no maintenance.
- Renoldflex is designed to be 100% maintenance-free making it an ideal coupling for harsh, dangerous or remote operating environments. The all-steel construction combined with the precision-machined components removes the need for lubrication and the necessity for regular cleaning.

Renoldflex
- The Renoldflex range of couplings is based upon a modular design where the precision-machined disc pack guarantees a high torsional stiffness. This is an integral characteristic for applications in packaging machines, paper machines, and continuous furnaces operating at high temperatures.
- Each Renoldflex component is manufactured to very high manufacturing tolerances for high-speed applications, including the presence of irregular or peak loads. This also allows for an accurate transmission of angular velocity.

Long life
- The precision design and manufacture of the disc elements creates a perfect force distribution, which eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no maintenance.
- Renoldflex is designed to be 100% maintenance-free making it an ideal coupling for harsh, dangerous or remote operating environments. The all-steel construction combined with the precision-machined components removes the need for lubrication and the necessity for regular cleaning.

Renoldflex - torsionally rigid steel coupling
- The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high-torque disc screws. This ensures a backlash-free and torsionally rigid connection.
- The Renoldflex range of couplings is based upon a modular design where the precision-machined disc pack guarantees a high torsional stiffness. This is an integral characteristic for applications in packaging machines, paper machines, and continuous furnaces operating at high temperatures.
- Each Renoldflex component is manufactured to very high manufacturing tolerances for high-speed applications, including the presence of irregular or peak loads. This also allows for an accurate transmission of angular velocity.

Maintenance free
- The precision design and manufacture of the disc elements creates a perfect force distribution, which eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no maintenance.
- Renoldflex is designed to be 100% maintenance-free making it an ideal coupling for harsh, dangerous or remote operating environments. The all-steel construction combined with the precision-machined components removes the need for lubrication and the necessity for regular cleaning.
Renoldflex – the advantages of the system

Renoldflex is a range of couplings that utilizes a stainless spring steel disc pack to provide a positive backlash free drive.

The coupling consists of two carbon steel hubs that are connected to the disc packs with a system ofeccentric precision bushings and high tensile steel screws. This construction provides a backlash free and torsionally rigid coupling. The precision design of the stainless disc pack guarantees a high torsional stiffness. This is an important advantage which is necessary for regular cleaning.

The Renoldflex range of couplings is based upon a modular construction provides a backlash free and torsionally rigid precision bushings and high tensile steel screws. This construction makes it suitable for use in a multitude of harsh or high temperature liquid pumps.

Renoldflex is designed to be 100% steel free. Each Renoldflex component is machined to within very tight manufacturing tolerances for both concentricity and perpendicularity. This makes the precision design of the spring steel disc pack guarantees a high torsional stiffness. This is an important advantage which is necessary for regular cleaning.

The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of eccentric precision bushings and high tensile steel screws. This construction provides a backlash free and torsionally rigid coupling. The precision design of the stainless disc pack guarantees a high torsional stiffness. This is an important advantage which is necessary for regular cleaning.

The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of eccentric precision bushings and high tensile steel screws. This construction provides a backlash free and torsionally rigid coupling. The precision design of the stainless disc pack guarantees a high torsional stiffness. This is an important advantage which is necessary for regular cleaning.

The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of eccentric precision bushings and high tensile steel screws. This construction provides a backlash free and torsionally rigid coupling. The precision design of the stainless disc pack guarantees a high torsional stiffness. This is an important advantage which is necessary for regular cleaning.
Renoldflex coupling size selection

In order to select the most suitable size, a number of service factors need to be taken into consideration. These service factors state elements to the design (T) of an application taken into account factors such as coupling size, load classification, misalignment, misalignment factor, temperature, etc., where F is F1, F2, etc. The most suitable coupling is then selected by varying the selection factor (F) and the couplings nearest torque (T). Please note: it is important to ensure that the coupling selected accepts the required torque overload and its temperature and stiffness. If misalignment is larger than the coupling, a larger coupling will be selected.

For applications with temperatures over 80˚C this must be suggested.

The maximum misalignments quoted within the technical data is the combined total angular misalignment ∆\(\text{ang} \) and offset misalignment ∆\(\text{rad} \).

The most suitable coupling is weighted depending upon the prime mover classification. Temperature factor, misalignment factor, load classification, driver classification as well as high ambient temperatures to produce a selection.

...
Renoldflex coupling type selection

In order to select the most suitable coupling, a number of service factors must be taken into consideration. These service factors state the unwanted elements to the design. The factors (or its application) to take into account factors such as: coupling, load conditions, where classification is made with respect to: centrifugal pumps, dynamic balancing, in misalignment factor, etc.

For the Renoldflex coupling range, the load classification factor, which is weighted depending upon the prime mover classification, is recommended for change in misalignment for the Renoldflex coupling range.

- **Angular misalignment factor**, f1:
 - Use maximum bore D
 - See Fig. 6

- **Misalignment factor**, f3:
 - See Fig. 8

Temperature factor, f2:

- These service factors are defined below:
 - See Fig. 9

Total service factor, f:

- The total service factor is defined by the equation:
 \[f = f_1 \times f_2 \times f_3 \]

Misalignment factor, f1:

- The misalignment is quantified within the technical data for the Renoldflex coupling range. The value may also be used at the same time.

Angular misalignment factor, f2:

- This factor is a function of ∆ANG [%] which is the angular misalignment for the coupling selected.

Misalignment factor, f3:

- This factor is a function of ∆AX [%] which is the axial misalignment for the coupling selected.

Total service factor, f:

- The total service factor is defined by the equation:
 \[f_{TOT} = f \times TOT \]

- Therefore, the presence of any axial misalignment for the Renoldflex coupling range cannot be present at the moment. Therefore, the presence of any axial misalignment for the Renoldflex coupling range cannot be present at the moment.

Dynamic balancing

- For non-reversing duty: T> Peak torque

Centrifugal pumps

- Gear pumps

Elevators and cranes

- Conveyors

Blowers

- Cooling towers

Paper machines and textile machines

- Machine tools: main drives

Reciprocating pumps

- Presses

Woodworking machines

- Grade G6.3 - BS

- Dynamic balancing is suggested.

In misalignment

- In applications over 40°C and high ambient temperatures to produce a selection torque (T)

Misalignment factor, f:

- The most suitable coupling is selected by comparing the selection torque (T) to the maximum shaft torque (Tm). Should shaft diameter exceed the maximum shaft diameter, a larger coupling should be selected.

- For applications with temperatures over 35°C, the service factors make adjustments to the design torque (T).

In misalignment

Misalignment factor, f:

- The torsional stiffness of a single pack complete coupling is determined by the equation:

Torque deviation

- See Fig. 8

Renoldflex overall dimensions

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>53</td>
<td>10.4</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>11.4</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>16</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>114</td>
<td>53</td>
<td>20.1</td>
</tr>
</tbody>
</table>
Renoldflex coupling size selection

In order to select the most suitable size of coupling (s), a number of service factors must be taken into consideration. These service factors state the elements to the degree (T) of an application to take into account factors such as changes in speed, load classification, misalignment, Misalignment factors make adjustments to the design torque of a coupling. The nominal torque of a coupling is normally used above 250 Nm. The most suitable coupling is then selected by comparing the service factors to the nominal torque. Each service factor can be calculated as follows:

\[F_1 = \frac{N_1}{N_{1,NOM}} \]

where:
- \(F_1 \) is the first service factor
- \(N_1 \) is the nominal torque of a coupling
- \(N_{1,NOM} \) is the nominal torque of a coupling

The maximum service factor is what is recommended. The maximum service factor is what is recommended. This is achieved by: the combination of the service factors and the nominal torque of a coupling. The total service factor:

\[F_{TOT} = F_1 \cdot F_2 \cdot F_3 \]

where:
- \(F_2 \) is the second service factor
- \(F_3 \) is the third service factor

The total service factor is the product of the service factors. It is used to ensure that the coupling selected will accept the required torque and misalignment of the shafts, according to the following formula:

\[\Delta \text{Mms} = \sqrt{\Delta \text{Mms,1}^2 + \Delta \text{Mms,2}^2} \]

where:
- \(\Delta \text{Mms,1} \) is the misalignment of the first shaft
- \(\Delta \text{Mms,2} \) is the misalignment of the second shaft

The following must be taken into account with regard to the coupling product range:

- For the coupling to be considered
- For heavy duty class, maximum bore: D

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

where:
- \(k \) is the torque factor

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a single pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a complete double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]

The torsional angle of a double pack coupling is:

\[\Delta \theta_{TOT} = \frac{F_{TOT}}{k} \]
The Renoldflex range of couplings is based upon a modular construction with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction combined with the precision-machined disc elements creating a perfect force distribution, which, in conjunction with the tight manufacturing tolerances, eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications, including in the presence of irregular or peak torques. This also allows for an accurate transmission of both concentricity and perpendicularity. This makes the Renoldflex range intrinsically suitable for operating on high-speed or high operating temperatures. Renoldflex is 100% steel construction makes it suitable for use in a multitude of harsh applications and difficult operating environments including temperatures up to 240°C. Ideal for use in applications involving steam, hot and high temperature liquid pumps.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Torque accuracy: The Renoldflex range offers a wide variety of applications and design situations: each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Renoldflex is available in a range of couplings that utilizes a stainless spring steel disc pack to provide a positive backlash free drive. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. This arrangement guarantees the highest torsional stiffness and backlash free operation. This arrangement allows for vertical or inclined mounting of the type A arrangement.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications. Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Zero backlash: The Renoldflex range of couplings is based upon a modular construction with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. This arrangement guarantees the highest torsional stiffness and backlash free operation. This arrangement allows for vertical or inclined mounting of the type A arrangement.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications. Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Zero backlash: The Renoldflex range of couplings is based upon a modular construction with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. This arrangement guarantees the highest torsional stiffness and backlash free operation. This arrangement allows for vertical or inclined mounting of the type A arrangement.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications. Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Zero backlash: The Renoldflex range of couplings is based upon a modular construction with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. This arrangement guarantees the highest torsional stiffness and backlash free operation. This arrangement allows for vertical or inclined mounting of the type A arrangement.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications. Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Zero backlash: The Renoldflex range of couplings is based upon a modular construction with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. This arrangement guarantees the highest torsional stiffness and backlash free operation. This arrangement allows for vertical or inclined mounting of the type A arrangement.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications. Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Zero backlash: The Renoldflex range of couplings is based upon a modular construction with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. The coupling consists of two carbon steel hubs that are connected to the disc packs with a system of micrometric precision bushings and high tensile steel screws. This ensures a backlash free drive with the additional benefit of a 100% steel construction. This arrangement guarantees the highest torsional stiffness and backlash free operation. This arrangement allows for vertical or inclined mounting of the type A arrangement.

High operating speeds: Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.

Long life: The precision design and meticulous in the disc elements creates a perfect force distribution, whilst the all steel construction combined with the precision-machined disc elements eliminates all backlash. This ensures the Renoldflex coupling range has a long life with little to no wear.

Renoldflex is designed to be 100% maintenance free making it an ideal coupling for harsh, dangerous or remote operating environments. The all steel construction makes it suitable for use in a multitude of harsh applications. Each Renoldflex component is precision designed and manufactured to very high manufacturing tolerances for high accuracy needs to be guaranteed. Each Renoldflex coupling is based upon a modular construction. The precision bushings and high tensile steel screws ensure very accurate position control for applications where operational precision position control is required.