Crownpin Couplings
Renold Gears has been manufacturing high quality, high specification gear units for over 100 years and has always been at the leading edge of gear technology with innovative products and power transmission solutions.

Interchangeability
Many of the products from Renold Gears are dimensionally interchangeable with other manufacturers gear units, allowing a trouble free replacement of gearboxes, in most cases upgrading the capacity through state of the art technology and materials.

Custom Made
Renold Gears is unique in its ability to offer custom made products designed to meet customers exacting requirements without compromise on availability and cost. From complete package solutions to individual precision replacement gears, all can be tailor made to meet specific applicational requirements.

Available
The most popular ranges of gearboxes are available from local distribution stock, backed up by extensive stocks from our manufacturing plant in the UK.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renold Gears</td>
<td>inside front cover</td>
</tr>
<tr>
<td>The Renold Collection</td>
<td>02</td>
</tr>
<tr>
<td>Coupling Selection Guide</td>
<td>04</td>
</tr>
<tr>
<td>Load Classification by Application</td>
<td>05</td>
</tr>
<tr>
<td>Service Factors and Selection</td>
<td>06</td>
</tr>
<tr>
<td>Key and Keyway Dimensions</td>
<td>07</td>
</tr>
<tr>
<td>Crownpin</td>
<td>08</td>
</tr>
<tr>
<td>Renold Chain</td>
<td>inside back cover</td>
</tr>
</tbody>
</table>
Max power / 100 rpm (kW) 1,640 kW
Max weight 501 kg
Max shaft size 290 mm
Max speed (rpm) 7,100 rpm
Max outer diameter 527 mm
Max torque (Nm) 156,620 Nm

Max power / 100 rpm (kW) 39.1 kW
Max weight 207 kg
Max shaft size 127 mm
Max speed (rpm) 751 mm
Max outer diameter N/A
Max torque (Nm) N/A

Max power / 100 rpm (kW) 482 kW
Max weight N/A
Max shaft size 180 mm
Max speed (rpm) 1,200 rpm
Max outer diameter 345 mm
Max torque (Nm) 46,000 Nm

Max power / 100 rpm (kW) 482 kW
Max weight N/A
Max shaft size 180 mm
Max speed (rpm) 1,200 rpm
Max outer diameter 345 mm
Max torque (Nm) 46,000 Nm

Max power / 100 rpm (kW) 39.1 kW
Max weight N/A
Max shaft size 110 mm
Max speed (rpm) 2,500 rpm
Max outer diameter 751 mm
Max torque (Nm) N/A
Flexible Couplings should be used to accommodate any combination of misalignment conditions described below.

At installation all couplings should be aligned as near to perfect as possible.

1. Angular
Angular misalignment is present when the shaft axes are inclined one to the other. Its magnitude can be measured at the coupling faces.

2. Parallel Offset
Parallel misalignment is present when the axes of the driving and driven shafts are parallel but laterally displaced.

3. End float (axial)
End float is the ability to accommodate a relative axial displacement of the connected shafts; achieved by sliding members or flexing of resilient components.

4. Torsional flexibility
Torsional flexibility is a design feature necessary to permit shock and impulsive loadings to be suitably dampened. It is achieved by the provision of a flexible medium such as rubber, springs, etc., between the two halves of the coupling.

Selection
In order to select the correct type and size of coupling, the following basic information should be known:

Power to be transmitted
(a) Normal.
(b) Maximum.
(c) Whether continuous or intermittent.

Characteristics of the drive
(a) Type of prime mover and associated equipment.
(b) Degree of impulsiveness of driven load.

Speed in revolutions per minute
(a) At which normal power is transmitted.
(b) At which maximum power is transmitted.
(c) Maximum speed.

Dimensions of shafts to be connected
(a) Actual diameter.
(b) Length of shaft extension.
(c) Full keyway particulars.

Selection Procedure
1. Nominal power in kW to be transmitted = K.
2. Select appropriate load classification from Table 1, denoted as either S, M or H.
3. From Table 2, establish Service Factor(s) to be applied, taking into account hours of operation/day and prime mover = fD.
4. From Table 3 select factor for the required frequency of starts/hr = fS.
5. Selection Power Ks = K x fD x fS
6. Equivalent power at 100 RPM = \(\frac{Ks \times 100}{RPM} \)
7. Check that coupling selected will accept the required shaft diameters. Should shaft diameter exceed maximum permissible, then re-select using next larger size of coupling.
Table 1

Agitators
- Pure liquids: S
- Liquids and solids: M
- Liquids - variable density: M

Centrifuges
- Centrifugal: S
- Lobe: M
- Vane: S

Brewing and distilling
- Bottling machinery: S
- Brew kettles - continuous duty: S
- Cookers - continuous duty: S
- Mash tuns - continuous duty: S
- Scale hopper - frequent starts: M

Can filling machines
- Can knives (1): M
- Can bumpers: M
- Car pullers: M
- Clarifiers: S
- Classifiers: M

Clay working machinery
- Brick press: H
- Briquette machine: H
- Clay working machinery: M
- Pug mill: M

Conveyors
- Centrifugal: S
- Lobe: M
- Reciprocating - multi-cylinder: M
- Reciprocating - single cylinder: H

Conveyors - uniformly loaded or fed
- Apron: S
- Assembly: M
- Belt: S
- Bucket: S
- Chain: S
- Screw: M

Conveyors - heavy duty not uniformly fed
- Apron: M
- Assembly: M
- Belt: M
- Bucket: M
- Chain: M
- Flight: M
- Live roll: *
- Over: S
- Reciprocating: H
- Screw: M
- Shaker: H

Crane Drives - not dry dock
- Main hoists: S
- Bridge travel: *
- Trolley travel: *

Crushers
- Ore: H
- Stone: H
- Sugar (1): H

Gearboxes
- Cable reels: M
- Conveyors: M
- Cutter head drives: H
- Jig drives: H
- Manoeuvring winches: M
- Pumps: M
- Screen drive: H
- Stackers: M
- Utility winches: M

Dry dock cranes
- Main hoist: (2)
- Auxiliary hoist: (2)
- Re-saw mirror-round conveyor: (3)
- Rotating, swing or slew: (3)
- Tracking, drive wheels: (4)

Elevators
- Bucket - uniform load: S
- Bucket - heavy load: M
- Bucket - continuous: S
- Centrifugal discharge: S
- Escalators: S
- Freight: M
- Gravity discharge: S
- Man lifts: *
- Passenger: *

Extruders (plastic)
- Film: S
- Sheet: S
- Coating: S
- Rods: S
- Tubing: S
- Blow moulders: M
- Pre-plasticisers: M

Fans
- Centrifugal: S
- Cooling towers: *
- Induced draft: *
- Forced draft: *
- Induced draft: *
- Large, mine etc.: M
- Large, industrial: M
- Light, small diameter: S

Feeders
- Apron: M
- Belt: M
- Disc: S
- Reciprocating: H

Food industry
- Beef slicer: M
- Cereal cooker: S
- Dough mixer: M
- Meat grinder: M
- Generators - not welding: S
- Hammer mills: H

Hoists
- Heavy duty: H
- Medium duty: M
- Skip hoist: M

Launder
- Washers - reversing: M
- Tumblers: M

Line shafts
- Driving processing equipment: M
- Light: S
- Other line shafts: S

Lumber industry
- Barretts, hydraulic, mechanical: M
- Burner: conveyor: M
- Chain saw and drag saw: H
- Chain transfer: H
- Craneway transfer: H
- De-barking drum: H
- Edger feed: M
- Gang feed: M
- Green chain: S
- Live rolls: H
- Log deck: H
- Log haul - incline: H
- Log haul - wet type: H
- Log turning device: H
- Main log conveyor: H
- Off bearing rolls: M

Machine tools
- Planer feed chains: M
- Planer floor chains: M
- Planer tilting hoist: M
- Re-saw mirror-round conveyor: M
- Roll cases: H
- Slab conveyor: H
- Small waste conveyor-belt: S
- Small waste conveyor-chain: M
- Sorting table: M
- Tipple hoist conveyor: M
- Tipple hold drive: M
- Transfer conveyors: M
- Transfer rolls: M
- Tray drive: M
- Trimmer feed: M
- Waste conveyor: M

Mills, rotary type
- Ball (1): M
- Cement kilns (1): M
- Dryers and coolers (1): M
- Kilns other than cement: M
- Pebble (1): M
- Rod, plain & wedge bar (1): M
- Tumbling barrels: H

Mills, auxiliary drives
- Concrete mixers continuous: M
- Concrete mixers intermittent: M
- Constant density: S
- Variable density: S

Oil industry
- Chillers: M
- Oil well pumping: *
- Paraffin filter press: M
- Rotary kilns: M

Paper mills
- Agitators (mixers): M
- Barker - auxiliary hydrualic: M
- Barker - mechanical: H
- Barking drum: H
- Beater and pulper: M
- Bleacher: S
- Calenders - super: H
- Converting machine except cutters, platers: M
- Conveyors: S
- Couch: M
- Cutters, platers: H
- Cylinders: M
- Dryers: M
- Feil stretcher: M
- Feil whipper: M
- Jordans: M
- Log haul: H

Presses
- Pulpmachine reel: M
- Stock chest: M
- Suction roll: M
- Washers and thickeners: M
- Winders: M

Printing presses
- Barge haul: H
- Pumps: Centrifugal
- Proportioning: M
- Reciprocating: single acting: 3 or more cylinders: M
- double acting: 2 or more cylinders: M
- single acting: 1 or 2 cylinders: *
- double acting: single cylinder: *
- Rotary - gear type: S
- Rotary - lobe, vane: M

Rubber and plastics industries
- Crackers (1): H
- Laboratory equipment: M
- Mixed mills (1): H
- Refiners (1): M
- Rubber calenders (1): M
- Rubber mill, 2 on line (1): M
- Rubber mill, 3 on line (1): S
- Sheeter (1): H
- Tyre building machines: H
- Tyre tube press openers: *
- Tubers and strainers (1): M
- Warming mills (1): M

Sand, dust, powder
- Screens: M
- Air washing: S
- Rotary, stone or gravel: M
- Travelling water intake: S

Sewage disposal equipment
- Bar screens: M
- Chemical feeders: S
- Collectors: S
- Dewatering screws: M
- Scum breakers: M
- Slow or rapid mixers: M
- Thickeners: M
- Vacuum filters: M

Slab pushers M
- Slitting gear: S
- Stickers: S
- Sugar industry: M
- Cane knives (1): M
- Crushers (1): H
- Mills (1): H

Textile industry
- Batches: M
- Calenders: M
- Cards: M
- Dry cans: M
- Dryers: M
- Dyeing machinery: M
- Looms: M
- Mangles: M
- Nappers: M
- Pads: M
- Range drives: *
- Slasher: M
- Soapers: M
- Spinners: M
- Tenter frames: M
- Washers: M
- Winders: M
- Windlass: *

Key
- S = Steady
- M = Medium Impulsive
- H = Highly Impulsive
- * = Refer to Renold

Note
- Machinery characteristics and service factors listed in this catalogue are a guide only. Some applications (e.g., constant power) may require special considerations. Please consult Renold.

www.renold.com
Service Factors and Selection

Example of Selection
Coupling is required to transmit 7.5kW at 1440 RPM to connect an electric motor to a gear box driving a chain conveyor running for 18 hours/day and starting 15 times/hour. Shaft diameters 55mm respectively.

K = 7.5kW
From Table 1 Load Classification = M (medium impulsive)
From Table 2 Service Factor \(f_D \) = 1.5
From Table 3 \(f_S \) = 1.2
Therefore selection kW is:

\[
K_s = K \times f_D \times f_S = 7.5 \times 1.5 \times 1.2 = 13.5 \text{ kW}
\]

Equivalent power at 100 RPM = \[
\frac{K_s \times 100}{1440} = \frac{13.5 \times 100}{1440} = 0.9375 \text{ kW} \]

From page 17 selection is RSC110 (644911) (maximum bore 55 mm).

Table 2 Service Factor (\(f_D \))

<table>
<thead>
<tr>
<th>Prime mover (Drive input)</th>
<th>Duration service hours/day</th>
<th>Steady load</th>
<th>Medium impulsive</th>
<th>Highly impulsive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric, air & hydraulic Motors or steam turbine (Steady input)</td>
<td>Intermittent - 3hrs/day max 3 - 10</td>
<td>0.90</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>over 10</td>
<td>1.25</td>
<td>1.25</td>
<td>1.75</td>
</tr>
<tr>
<td>Multi-cylinder I.C. engine (Medium impulsive input)</td>
<td>Intermittent - 3hrs/day max 3 - 10</td>
<td>1.00</td>
<td>1.25</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>over 10</td>
<td>1.50</td>
<td>1.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Single-cylinder I.C. engine (Highly impulsive input)</td>
<td>Intermittent - 3hrs/day max 3 - 10</td>
<td>1.25</td>
<td>1.50</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>over 10</td>
<td>1.75</td>
<td>1.75</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Table 3 Factor for Starts/Hour (\(f_S \))

<table>
<thead>
<tr>
<th>No of starts per hour</th>
<th>0-1</th>
<th>1-30</th>
<th>30-60</th>
<th>60+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Key Stress

1. Permissible key stress = 70N/mm²
2. Nominal torque \(T_{KM} = K \times 9550 \div \text{RPM Nm} \)
3. Force at key \(F = \frac{T_{KM}}{r} \)
4. Shaft Rad \(r \) metres
5. Key area \(A = J \times \text{HUB length mm} \) (Obtain from relevant catalogue page).
6. Key stress \(f_k = \frac{F}{A} \text{ N/mm}^2 \)
7. If resultant stress is less than 70 N/mm² key stress is acceptable.
 If resultant \(f_k \) is greater than 70, consider either two keyways or extending hub length.
8. Example:

 \[
 T_{KM} = 7.5 \times 9550 \div 1440 = 49.7 \text{Nm}
 \]
 \[
 r = 55/2 = 27.5 \text{mm} + 1000 = 0.0275 \text{m}
 \]
 \[
 F = 49.7/0.0275 = 1741 \text{N}
 \]
 \[
 A = 16 \times 45 = 720 \text{mm}^2
 \]
 \[
 f_k = 1741/720 = \frac{N}{\text{mm}^2}
 \]
 Selection is therefore good.

For operation above 80% of the declared maximum coupling speed it is recommended that the coupling is dynamically balanced.

It is the responsibility of the system designer to ensure that the application of the coupling does not endanger the other constituent components in the system. Service factors given are an initial selection guide.

Rotating equipment must be provided with a suitable guard before operating or injury may result.
Key and Keyway Dimensions

Metric (mm)

Keyways comply with BS4235: Part 1: 1972

<table>
<thead>
<tr>
<th>Shaft dia.</th>
<th>Key & keyway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over</td>
<td>Incl.</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>95</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>170</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>230</td>
</tr>
</tbody>
</table>

Imperial (inches)

Keyways comply with BS46: Part 1: 1958

<table>
<thead>
<tr>
<th>Shaft dia.</th>
<th>Key & keyway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over</td>
<td>Incl.</td>
</tr>
<tr>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td>1.25</td>
<td>1.50</td>
</tr>
<tr>
<td>1.50</td>
<td>1.75</td>
</tr>
<tr>
<td>1.75</td>
<td>2.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.50</td>
</tr>
<tr>
<td>2.50</td>
<td>3.00</td>
</tr>
<tr>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>3.50</td>
<td>4.00</td>
</tr>
<tr>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td>5.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Keyway dimensions

Parallel keyways are supplied unless customer states otherwise.
An established pin/buffer coupling, offering extended power capacity where the demand for long life and simplicity of construction make it suitable for working in arduous conditions.

Coupling capacity
- Maximum power @ 100RPM: 2611kW
- Maximum torque: 249,400Nm

Features and benefits
- Heavy duty coupling suitable for shock load conditions.
- Neoprene rubber buffers for robust flexibility.
- Torsionally flexible - shock absorbing, extending machine life.
- Maintenance free - minimum number of wearing parts.
- Misalignment capabilities allowing flexibility installation.

Standard range comprises
- Shaft to Shaft
- Shear Pin
- Brake Drum

Applications
- Conveyors
- Cranes
- Fans
- Leisure Rides
- Lifts
- Pumps
- Screens
- Washers
- General Industrial Applications

Construction details
- Cast Iron Half Bodies
- Neoprene Buffers:
 - Temp range - 30º to + 95ºC

General misalignments
- Parallel Offset
 - Sizes CP36 to CP135 - Max 0.13mm
 - Sizes CP150 TO CP480 - Max 0.18mm
- Angular
 - Max 0.15º
Renold continue to supply the following components as spares and replacement parts but recommend Pinflex for new applications.

The following Crownpin components are recommended for high torque applications as they exceed the Pinflex range.

Other pin configurations are available - please consult Renold.
Component Spares

<table>
<thead>
<tr>
<th>Coupling number</th>
<th>Product number</th>
<th>Pin half body</th>
<th>Buffer half body</th>
<th>Pin & Neoprene buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pilot bored</td>
<td>Taper bored</td>
<td>Pilot bored</td>
</tr>
<tr>
<td>CP36BB3</td>
<td>7032303</td>
<td>7032303/1</td>
<td>N/A</td>
<td>7032303/2</td>
</tr>
<tr>
<td>CP48BB4</td>
<td>7032105</td>
<td>7032105/1</td>
<td>N/A</td>
<td>7032105/2</td>
</tr>
<tr>
<td>CP48BB8</td>
<td>7032305</td>
<td>7032305/1</td>
<td>N/A</td>
<td>7032305/2</td>
</tr>
<tr>
<td>CP57##4</td>
<td>7032106</td>
<td>7032106/1</td>
<td>7032106/177</td>
<td>7032106/2</td>
</tr>
<tr>
<td>CP57##8</td>
<td>7032306</td>
<td>7032306/1</td>
<td>7032306/177</td>
<td>7032306/2</td>
</tr>
<tr>
<td>CP65##8</td>
<td>7032307</td>
<td>7032307/1</td>
<td>7032307/177</td>
<td>7032307/2</td>
</tr>
<tr>
<td>CP77##8</td>
<td>7032308</td>
<td>7032308/1</td>
<td>7032308/177</td>
<td>7032308/2</td>
</tr>
<tr>
<td>CP91##4</td>
<td>7032109</td>
<td>7032109/1</td>
<td>7032109/177</td>
<td>7032109/2</td>
</tr>
<tr>
<td>CP91##8</td>
<td>7032309</td>
<td>7032309/1</td>
<td>7032309/177</td>
<td>7032309/2</td>
</tr>
<tr>
<td>CP106##10</td>
<td>7032310</td>
<td>7032310/1</td>
<td>7032310/177</td>
<td>7032310/2</td>
</tr>
<tr>
<td>CP120##8</td>
<td>7032312</td>
<td>7032312/1</td>
<td>7032312/177</td>
<td>7032312/2</td>
</tr>
<tr>
<td>CP135##10</td>
<td>7032313</td>
<td>7032313/1</td>
<td>7032313/177</td>
<td>7032313/2</td>
</tr>
<tr>
<td>CP150B10</td>
<td>7032315</td>
<td>7032315/1</td>
<td>N/A</td>
<td>7032315/2</td>
</tr>
<tr>
<td>CP165B10</td>
<td>7032316</td>
<td>7032316/1</td>
<td>N/A</td>
<td>7032316/2</td>
</tr>
<tr>
<td>CP180B10</td>
<td>7032318</td>
<td>7032318/1</td>
<td>N/A</td>
<td>7032318/2</td>
</tr>
<tr>
<td>CP210B12</td>
<td>7032321</td>
<td>7032321/1</td>
<td>N/A</td>
<td>7032321/2</td>
</tr>
<tr>
<td>CP240B12</td>
<td>7032324</td>
<td>7032324/1</td>
<td>N/A</td>
<td>7032324/2</td>
</tr>
<tr>
<td>CP270B14</td>
<td>7032327</td>
<td>7032327/1</td>
<td>N/A</td>
<td>7032327/2</td>
</tr>
<tr>
<td>CP300B14</td>
<td>7032330</td>
<td>7032330/1</td>
<td>N/A</td>
<td>7032330/2</td>
</tr>
<tr>
<td>CP360B18</td>
<td>7032336</td>
<td>7032336/1</td>
<td>N/A</td>
<td>7032336/2</td>
</tr>
<tr>
<td>CP420B16</td>
<td>7032342</td>
<td>7032342/1</td>
<td>N/A</td>
<td>7032342/2</td>
</tr>
<tr>
<td>CP480B20</td>
<td>7032348</td>
<td>7032348/1</td>
<td>N/A</td>
<td>7032348/2</td>
</tr>
</tbody>
</table>
The best range of solution chain products available anywhere

RENOLD Synergy™
- High performance
- Superior wear life
- Outstanding fatigue resistance

RENOLD Syno™
- Maintenance free
- Self-lubricating chain
- Food industry-approved lubricant

RENOLD
- Best premium chain
- Leading performance
- Solid bush / solid roller / end softened pin

Hydro-Service™
- Superior corrosion resistant coating
- Alternative choice to stainless steel chain
- Will not chip or peel
- Hexavalent chrome-free

Steel Pin Bush Roller Chain
- Manufactured to international stds
- Full range of pitch alternatives
- Breaking loads 13 to 900 kN as std
- Attachments to suit varied applications

Leaf Chain
- Comprehensive ranges used worldwide for safety critical lifting applications
- 100 years experience in developing and maintaining lifting chain

Steel Knuckle Chain
- Heavy duty, detachable elevator chains
- Integral K type attachments
- Breaking loads from 642kN to 1724kN
- Sealed joint to extend chain life

Roll-Ring™
- Revolutionary chain tensioner
- Installed in seconds and self adjusting
- Maintenance free
- Also acts as noise damper

Customised Engineering Chain
- Wide range to suit specialised applications using high specification materials and treatment processes
- Designed in close collaboration with customer

Smartlink™
- Load monitoring technology
- Technical reports & data logging

www.renold.com
UK
Renold Clutches & Couplings
Cardiff
Tel +44 (0) 29 20792737
Fax +44 (0) 29 20791360
couplings@cc.renold.com

Renold Hi-Tec Couplings
Halifax
Tel +44 (0) 1422 255000
Fax +44 (0) 1422 320273
couplings@hi-tec.renold.com

Renold Gears
Milnrow
Tel +44 (0) 1706 751000
Fax +44 (0) 1706 751001
gears.sales@renold.com

USA
Renold Ajax
Westfield, New York State
Tel +1 716 326 3121
Fax +1 716 326 8229
ainfo@renoldajax.com

WEB
www.renold.com

E-MAIL
enquiry@renold.com

For you nearest Renold dedicated specialist or distributor please visit the Renold website - www.renold.com or contact Renold UK

Whilst all reasonable care in compiling the information contained in this brochure is taken, no responsibility is accepted for printing errors. All information contained in this brochure is subject to change after the date of publication.